Soft Double Pomeron Exchange in CDF Run I

Kenichi Hatakeyama
The Rockefeller University
for the CDF Collaboration

Introduction

Main Issue in Hadronic Diffraction: results from single diffractive (SD) dijet production

CDF Collaboration, Phys. Rev. Lett. 84, 5043-5048 (2000).

The diffractive structure function measured using SD dijet events at the Tevatron is smaller than that at HERA by approximately an order of magnitude.

Factorization Breakdown

 The discrepancy is generally attributed to additional color exchanges which spoil the "diffractive" rapidity gap.

Dijet Production in DPE

CDF Collaboration, Phys. Rev. Lett. 85, 4215-4220 (2000).

- Dijet production by double pomeron exchange was studied by CDF.
- R[DPE/SD] is larger than R[SD/ND] by a factor of about 5.

The formation of the 2nd gap is not as suppressed as the 1st gap.

Extract diffractive structure function from $^{\rm x}$ R[DPE/SD] and compare it with expectations from HERA results.

Diffractive Structure Function measured using DPE dijet events

Soft Diffraction: Inclusive (Soft) SD Results

Unitarity problem: $\sigma_{so}/\sigma_{tot} \rightarrow 1$ at $\sqrt{s} \approx 2 \text{TeV}$.

 The measured SD cross section is smaller than the Regge theory prediction by approximately an order of magnitude at the Tevatron

energy.
$$\frac{d^2\sigma_{SD}}{dtd\xi} = f_{IP/p}(t,\xi) \cdot \sigma_{IP-\bar{p}}(s'=\xi s).$$

O Normalizing the integral of the pomeron flux $(f_{\text{IP/p}})$ to unity yields the correct \sqrt{s} -dependence of σ_{SD} .

Renormalization

Similar results were obtained for double diffraction as well.

Is the formation of the second gap suppressed?

Inclusive (Soft) DPE Cross Section

⇒ Regge theory prediction + factorization :

$$\frac{d^4 \sigma_{\text{DPE}}}{d\xi_{\bar{p}} d\xi_{p} dt_{\bar{p}} dt_{p}} = \underbrace{f_{\text{IP}/\bar{p}}(\xi_{\bar{p}}, t_{\bar{p}}) f_{\text{IP}/p}(\xi_{p}, t_{p})}_{\text{II}} \left(\kappa^2 \beta^2 (0) (s')^{\epsilon}\right),$$

$$\frac{d^4 \sigma_{\text{DPE}}}{d\xi_{\bar{p}} d\xi_{p} dt_{\bar{p}} dt_{p}} = \underbrace{\left[\prod_{i=\bar{p},p} \frac{\beta(t_{i})}{4\sqrt{\pi}} e^{[\alpha(t_{i})-1]\Delta y_{i}}\right]^{2}}_{\rho_{\text{gap}}} \left(\kappa^2 \beta^2 (0) (s')^{\epsilon}\right),$$

$$\frac{\sigma_{\text{DPE}}}{\sigma_{\text{SD}}} \approx 0.36 \text{ at } \sqrt{s} = 1800 \text{ GeV}.$$

 $\xi_{p(\overline{p})}$: fractional momentum loss of $p(\overline{p})$,

 $f_{IP/p(\overline{p})}$: Pomeron flux,

 $\beta(t)$: IP – $p(\overline{p})$ coupling, g:triple-Pomeron coupling,

 $\kappa = g/\beta(0)$.

 \Rightarrow Flux renorm. model: Both $f_{\text{IP/p}}$ and $f_{\text{IP/p}}$ are renormalized independently. (both gaps are suppressed.) K. Goulianos, Phys. Lett. B 353, 379 (1995).

$$\frac{\sigma_{\text{DPE}}}{\sigma_{\text{SD}}} \approx 0.041 \ \text{at} \ \sqrt{\text{s}} = 1800 \, \text{GeV}.$$

 \Rightarrow Gap probability (P_{qap}) renorm. model : P_{qap} is renormalized. (only one gap is suppressed.) K. Goulianos, e.g. hep-ph/0110240 (2001).

$$\frac{\sigma_{\text{DPE}}}{\sigma_{\text{SD}}} \approx 0.21 \ \text{at} \ \sqrt{s} = 1800 \ \text{GeV}.$$

September 17-20, 2003.

Analysis Strategy

Use events triggered on a leading antiproton.

 ξ_{pbar} is measured by Roman Pots : $\xi_{pbar}^{\mbox{\scriptsize RPS}}.$

• Measure $\xi_p(\xi_{pbar})$ from BBC and calorimeters : $\xi_p^X(\xi_{pbar}^X)$.

• Calibrate ξ^X by comparing ξ_{pbar}^{RPS} and ξ_{pbar}^X .

• Plot ξ_p^X distribution and look for a DPE signal expected in the small ξ_p^X region.

Reconstruction of ξ_p^X

Use calorimeter towers and BBC hits to reconstruct $\xi_{\rm p}$:

$$\xi_{p}^{X} = \frac{\sum_{i} E_{T,i} exp(+\eta_{i})}{\sqrt{s}}.$$

<u>Calorimeters</u>: use E_T and η of towers above noise level.

BBC: use hits in BBC scintillation arrays.

• p_T is chosen to follow the "known" p_T spectrum :

$$\frac{d\sigma}{dp_{T}} = p_{T}(1 + p_{T}/1.27)^{-[4+35.8/\ln(M/0.3)]}.$$

CENTRAL MUON UPGRAD **CDF** letector n\Run 1 BBC Beam Pipe

Calorimeters

Calibration of ξ^{X}

 ξ^{X} distribution in every ξ^{RPS} bin is fitted to

$$f(\xi) = P3exp\left(-0.5\left[\frac{\xi - P1}{P2} + exp\left(-\frac{\xi - P1}{P2}\right)\right]\right).$$

P1: Peak

P2: Width

$$\xi X = \xi RPS$$

 $(\xi^{X} \text{ is calibrated so that } \xi^{X} = \xi^{RPS}.)$

P2/P1 = 0.57

(ξ^{\times} resolution is ~60%.)

ξ_p^X Distribution

- The input ξ_p distribution in DPE MC is $1/\xi_p^{1+\epsilon}$ ($\epsilon = 0.104$ is obtained from $p^{\pm}p/\pi^{\pm}p/K^{\pm}p$ total cross sections).
- The DPE and SD MC distributions are independently normalized to the data distribution.
- \circ The measured ξ_p^X distribution is in agreement with the DPE+SD MC distribution.

DPE Fraction in SD Events

$$\begin{split} &0.035 < \xi_{\overline{p}} < 0.095, \qquad \xi_{p} < 0.02 \\ &R \bigg[\frac{\text{DPE}}{\text{SD(incl)}} \bigg] = 0.195 \pm 0.001 (\text{stat}) \pm 0.011 (\text{syst}) \\ &\text{at } \sqrt{s} = 1800 \ \text{GeV}. \\ &\left[\frac{\text{DPE}}{\text{SD(incl)}} \right] = 0.168 \pm 0.001 (\text{stat}) \pm 0.012 (\text{syst}) \ \text{at } \sqrt{s} = 630 \ \text{GeV}. \end{split}$$

	R[DPE/SD(incl)]	
Source	@ 1800 <i>G</i> eV	@ 630 GeV
Data	0.195±0.001±0.011	0.168±0.001±0.012
Regge + factorization	0.36	0.25
Flux Renormalization	0.041	0.041
P _{gap} Renormalization	0.21	0.17

In agreement with the renormalized gap predictions!

Good Agreement with Soft Diffraction: Renormalized Gap Predictions! Summary • CDF < 0.05 $\sigma_{\rm DD}$ (mb) for $\Delta\eta > 3$. o 3 SD UA5 (adjusted) Regge Standard flux ···· Renormalized gap Total Single Diffraction Cross Section (mb) CDF IP △ E710 × Cool et al Renormalized flux 10 DD IP \sqrt{s} (GeV) \sqrt{s} (GeV) 10 2 10³ √s (GeV) 10 100 10 √s (GeV) DPE < 0.02 CDF: one-gap / no-gap CDF Data (Preliminary) • CDF Preliminary: two-gap / one-gap gap fraction Δη Regge prediction IP 'nβ ---- Regge + Factorization Renorm-gap prediction Fraction of Events with Gap Probability Renorm. IP Pomeron Flux Renom. 2-gap 0.3 SDD P 1-gap IP 10 0.1 √s' (GeV IΡ √s (GeV) 10² 103 sub-energy √s' (GeV) √s (GeV) September 17-20, 2003. кепіспі натакеуата

Conclusions

- O The measured ξ_p^X distribution exhibits ~1/ $\xi^{1+\epsilon}$ behavior (ε = 0.104).
- The measured DPE fraction in SD is:

$$R \left[\frac{DPE}{SD(incl)} \right] = 0.195 \pm 0.001(stat) \pm 0.011(syst)$$

for 0.035 ξ_{pbar} 0.095 and ξ_{p} 0.02 at $\int s = 1800 \, GeV$.

> in agreement with the renormalized gap prediction.

In events with a rapidity gap, the formation of a second gap is "unsuppressed"!